Beyond the molecular orbital conception of electronically excited states through the quantum theory of atoms in molecules.
نویسندگان
چکیده
We show that the use of the quantum theory of atoms in molecules (QTAIM) in electronically excited states allows expanding the knowledge that the molecular orbital (MO) framework provides about electronic rearrangements. Despite that historical prejudice seemed to preclude the use of QTAIM beyond the electronic ground state, this paper evidences that QTAIM is versatile enough to deal with excited states. As an example, the paradigmatic n → π* electronic transition of formaldehyde is analyzed. Using QTAIM, an energy partition of excited state energies into atomic and diatomic energies is carried out for the first time. This partition shows that upon electronic excitation the atoms of the CO bond experience a stabilization in their net energies, accompanied by a destabilization in their interaction, a fact which is in accordance with the idea of populating an antibonding π* MO. The associated C-O bond elongation in the nπ* state does not involve a change in the π atomic populations - as one would expect from a π* orbital - but in the σ ones. Moreover, it is also found that the nπ* state is characterized by a weaker C-O interaction energy in comparison to that in the electronic ground state. In order to strengthen this interaction, the electron-electron repulsion between C and O is reduced via a symmetry-breaking of the electron density, causing the C pyramidalization. A topological analysis based on the Laplacian of the electron density and on the electron localization function (ELF) reveals that the n → π* transition can be visualized as a rotation of 90° of the oxygen lone pairs.
منابع مشابه
Quantum Mechanic Studies of Natural Bond Orbital & Stabilities of [CuCH2SiMe3]4Complexes With Different Halogens
The asymmetric unit of the title compound, Contains two independent molecules. The Cu atoms are four coordinated in distorted tetrahedral configuration by two atoms from 5,5`-dimethyl-2,2`- bipyridine and two terminal atoms. In the Cuystal structure, inter molecular hydrogen bonds link the molecules. The are contacts between the methyl groups and the pyridine and five member rings containing ...
متن کاملA DFT and Molecular Dynamics Study on Inhibitory Action of Three Amine Derivatives on Corrosion of Carbon Steel
Inhibition efficiencies of three amine derivatives (Diethylenetriamine (I), Triethylenetetramine (II), and Pentaethylenehexamine (III)) have been studied on corrosion of carbon steel using density functional theory (DFT) method in gas phase. Quantum chemical parameters such as EHOMO (highest occupied molecular orbital energy), ELUMO (lowest unoccupied molecular orbital energy), hardness (η), po...
متن کاملTheoretical insights of magnetizability and solvent effect on the electronic properties of CoB8- molecule
Equilibrium geometry, electronic structures, and vibrational modes of CoB8- were investigated in the PBEPBE/6-311+G(d,p) level of theory. The nucleus independent chemical shift (NICS) analysis and magnetizability values were used for studying of aromaticity in CoB8-. The effects of different solvents on the structure and frontier orbital energies were calculated using the polarizable continuum ...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملInvestigation of hydralazine drug adsorption on functionalized single-walled carbon nanotubes by density functional theory (DFT) method
Background: In recent years, advances in nanotechnology presents opportunities to overcome limitations in targeted drug delivery. Nano drug carriers have the ability to change the pharmacokinetics of drugs and can improve efficacy and reduce side effects. The objective of the present work is to study the interaction of Hydralazine with functionalized carbon nanotubes by performing density funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 20 شماره
صفحات -
تاریخ انتشار 2014